7 research outputs found

    Surfaces Reconstruction Via Inertial Sensors for Monitoring

    Get PDF
    International audienceThis document deals with the new capabilities of monitoring via the surface reconstruction of stuctures with sensors' arrays systems. Indeed, we will detail here our new demonstrator composed of a smart textile equipped with inertial sensors and a set of processings allowing to reconstruct the shape of the textile moving along time. We show here how this new tool can provide very useful information from the structures

    Smooth Interpolation of Curve Networks with Surface Normals

    Get PDF
    International audienceRecent surface acquisition technologies based on microsensors produce three-space tangential curve data which can be transformed into a network of space curves with surface normals. This paper addresses the problem of surfacing an arbitrary closed 3D curve network with given surface normals.Thanks to the normal vector input, the patch finding problem can be solved unambiguously and an initial piecewise smooth triangle mesh is computed. The input normals are propagated throughout the mesh and used to compute mean curvature vectors. We then introduce a new variational optimization method in which the standard bi-Laplacian is penalized by a term based on the mean curvature vectors. The intuition behind this original approach is to guide the standard Laplacian-based variational methods by the curvature information extracted from the input normals. The normal input increases shape fidelity and allows to achieve globally smooth and visually pleasing shapes

    Surfacing Curve Networks with Normal Control

    Get PDF
    International audienceRecent surface acquisition technologies based on microsensors produce three-space tangential curve data which can be transformed into a network of space curves with surface normals. This paper addresses the problem of surfacing an arbitrary closed 3D curve network with given surface normals. Thanks to the normal vector input, the patch finding problem can be solved unambiguously and an initial piecewise smooth triangle mesh is computed. The input normals are propagated throughout the mesh. Together with the initial mesh, the propagated normals are used to compute mean curvature vectors. We then compute the final mesh as the solution of a new variational optimization method based on the mean curvature vectors. The intuition behind this original approach is to guide the standard Laplacian-based variational methods by the curvature information extracted from the input normals. The normal input increases shape fidelity and allows to achieve globally smooth and visually pleasing shapes

    Shape from sensors: Curve networks on surfaces from 3D orientations

    Get PDF
    International audienceWe present a novel framework for acquisition and reconstruction of 3D curves using orientations provided by inertial sensors. While the idea of sensor shape reconstruction is not new, we present the first method for creating well-connected networks with cell complex topology using only orientation and distance measurements and a set of user- defined constraints. By working directly with orientations, our method robustly resolves problems arising from data inconsistency and sensor noise. Although originally designed for reconstruction of physical shapes, the framework can be used for “sketching” new shapes directly in 3D space. We test the performance of the method using two types of acquisition devices: a standard smartphone, and a custom-made device

    Morphorider: a new way for Structural Monitoring via the shape acquisition with a mobile device equipped with an inertial node of sensors

    Get PDF
    International audienceWe introduce a new kind of monitoring device, allowing the shape acquisition of a structure via a single mobile node of inertial sensors and an odometer. Previous approaches used devices placed along a network with fixed connectivity between the sensor nodes (lines, grid). When placed onto a shape, this sensor network provides local surface orientations along a curve network on the shape, but its absolute position in the world space is unknown. The new mobile device provides a novel way of structures monitoring: the shape can be scanned regularly, and following the shape or some specific parameters along time may afford the detection of early signs of failure. Here, we present a complete framework for 3D shape reconstruction. To compute the shape, our main insight is to formulate the reconstruction as a set of optimization problems. Using discrete representations, these optimization problems are resolved efficiently and at interactive time rates. We present two main contributions. First, we introduce a novel method for creating well-connected networks with cell-complex topology using only orientation and distance measurements and a set of user-defined constraints. Second, we address the problem of surfacing a closed 3D curve network with given surface normals. The normal input increases shape fidelity and allows to achieve globally smooth and visually pleasing shapes. The proposed framework was tested on experimental data sets acquired using our device. A quantitative evaluation was performed by computing the error of reconstruction for our own designed surfaces, thus with known ground truth. Even for complex shapes, the mean error remains around 1%

    Morphorider: Acquisition and Reconstruction of 3D Curves with Mobile Sensors

    Get PDF
    International audienceThis paper introduces a new method for real-time shape sensing. Using a single inertial measurement unit (IMU), our method enables to scan physical objects and to reconstruct digital 3D models. By moving the IMU along the surface, a network of local orientation data is acquired together with traveled distances and network topology. We then reconstruct a consistent network of curves and fit these curves by a globally smooth surface. To demonstrate the feasibility of our approach, we have constructed a mobile device called the Morphorider, which is equipped with a 3A3M-sensor node and an odometer for distance tracking

    Monitoring of Bridges by Using Static and Dynamic Data from MEMS Accelerometers

    No full text
    International audienceStructural Health Monitoring methods may be divided into two major categories depending on the type of data used during the damage identification: static or dynamic. In this paper, it is shown that both analyses can be performed with the same instrumentation composed only of Micro Electro Mechanical System (MEMS) accelerometers. The latter has the capability to measure static and dynamic data. In very low frequency, accelerometers are used as inclination sensors to estimate static deflection. In higher frequency, accelerometers are used as vibration sensors to perform modal analysis. Both analyses are illustrated in the case of a real footbridge. Static deflections and modal flexibility-based deflections are compared in operational conditions, including pedestrian loads and temperature changes, and in artificially-introduced damage conditions. Very good agreements are obtained showing the relevance of the two approaches. Static and dynamic analyses could be used in a complementary way and provide additional information in order to reinforce the confidence and the accuracy of the damage identification. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG
    corecore